Cosmic Building Blocks: From What 1s Earth Made?

The Sun constitutes
99.87% of the mass
of the Solar system.

Earth 1s big and
important, so its
composition should
be similar to that of
the average Solar
system, e.g., Sun

Richard Carlson
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CIDER Geoneutrinos 2014




A Solar Compositional Analog in the Laboratory

SolarComposition Normalized to Cl Chondrites
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Org_%_eil, Cl Carbonaceoq_s Chondrite
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Photo by L. Martel, wwaw.psrd.hawaii.edu with permission of
Natural History Museum, London.
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Isotopic studies are revealing an ever

increasing number of elements where
Earth 1s 1sotopically distinct from most

meteorites, particularly C-chondrites

€ = parts in 10,000 difference between sample and terrestrial standard

Figures from Warren (EPSL, 2011)
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Isotopically, Earth 1s not Solar

Only E and CI
chondrites lie on the
same OXygen mass
fractionation line as
does Earth

(Figure from Clayton, TOG,
2004, with the addition of
Solar oxygen from McKeegan
et al., Science 2011)
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d = difference in *O/!'°0 between sample and terrestrial standard in per mil



It the Bulk-Earth 1s E-Chondrite
then the Lower Mantle # Upper Mantle

Estimates of Bulk Silicate Earth (BSE) Composition
C- E- Upper E-
Chondrite | Chondrite” Mantle” Chondrite
/Earth Lower
BSE' Mantle”

S10, 45.0 49.8 45.8 51.8
MgO 37.8 36.5 39.0 35.3
FeO 8.04 8.84 7.94 9.28
AL O; 4.43 2.42 3.59 1.85
K ug/g 240 120 180 90
Th ng/g 80 44 67 33

U ng/g 20 12 18 9

1- (McDonough & Sun, Chem. Geol. 1995), 2- (Javoy et al.,
EPSL 2010a)




Earth does not have Solar Abundances of Volatile
Elements, not even Moderately Volatile Elements

Abundance Normalized to Cl Chondrites
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Dating Planetary Volatile Depletion

87Rb = ¥'Sr t,;,=49 Ga >Mn 2 3Crt,,=3.7 Ma

Rb-Sr: Need to know the Rb/Sr
ratio of the portion of the nebula
from which Earth formed, and
the initial 37Sr/%6Sr of Earth/ S
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4100

>3Mn: Main uncertainty is when, and the
degree to which, mantle Mn/Cr was
changed by core formation

(figure from Palme and O’Neil, TOG, 2013.
Data from Trinquier et al., GCA 2008 and Qin
et al., GCA 2010 )




Abundance Normalized to Cl Chondrites
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The Added Complication of

Internal Planet Differentiation

Mantle Abundances
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Iron Meteorite Tungsten Isotopic Composition Shows that Metal-Silicate
Separation Happened Quickly, Even on Small Planetesimals
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I82Hf - 182W (8.9 Ma half life)

Many iron meteorites have 82W /
184\ ratios similar to the Solar
system initial value determined
from CAls. Others have higher
I82W/184W consistent with iron-
metal separation times of 20 Ma.
The implication here is that core
formation occurred very rapidly on
small planetesimals and didn’t wait
until a planet the size of Earth had
accumulated.

(Kleine et al., EPSL, 2009)




So What If Earth Formed Out Of:

Instead of this: A primitive chondrite
This: Vesta, a highly differentiated with Solar composition in all but the
planetesimal that lost its atmosphere and most volatile elements
segregrated core, mantle, and crust as

the result of a global magma ocean at
4565 Ma (Solar system is 4568 Ma old)

Orgueil, Cl Carbonaceous Chondrite

e . S : 3
Photo by L. Martel, www.psrd.hawaii.edu with permission of
Natural History Museum, London.




The Physics of Planetary Accretion

Imperfect accretion during “hit and run” collisions, e.g. Asphaug et al., 2006
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The Lesson from Comparative Planetology

Moon: Crust mostly
anorthosite formed by
plagioclase flotation
from a global magma
ocean at 4.4 Ga. Whole
Moon iron deficient.

Magma Ocean Evolution

Image from Jeff Plescia in Moon 101

Mars: Crust broadly basaltic. Formed by serial magmatism that
continues to recent times though most of the Martian surface may
be >4 Ga. Mantle shows chemical evidence of very early (>4.5
Ga) global differentiation.

Mercury: Crust broadly basaltic to komatiitic, mostly or entirely
volcanic in origin. Enriched in sulfur (up to 3 wt%), sodium and
potassium, very low in iron (<2 wt%). Extremely high ratio of
core to mantle.




Igneous Differentiation Very Good at Separating
U, Th, K from Other Elements
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The Post-Magma Ocean Moon KREEP Model Age 4.36 Ga

Crust Age ~4.4 Ga
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Earth’s Crust-Mantle Differentiation,
but from what Starting Composition?

Average continental crust (CC) age ~ 2 Ga

MORB crust
age <200 Ma
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142Nd Difference Between Earth and Chondrites

e I42Nd/!%Nd ratios measured in ———
carbonaceous and ordinary chondrites and _ _ i
basaltic eucrites are lower than all modern Basaltic Eucrite %;hz
terrestrial rocks. Enstatite chondrites overlap

both O-chondrite and terrestrial mantle values. "2
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Explanation 1:

» Accessible Earth has a Sm/Nd ratio ~6% *i‘c)
higher than O-chondrites. High Sm/Nd O-Chondrite ‘A_ﬁ =
ratio results in excess '2Nd from the | Aﬁ$ I
decay of 46Sm. < —3
()
Explanation 2: - o E
e 142Nd variation due to incomplete C-Chondrite % D
iXi - @~ &2
mixing nucleosynthetic products. Only ﬁ A 12
E-chondrites sampled a similar mix as 80 60 40 -20 | 0o 20
Earth. %°Nd variation has nothing to do 45 5

Nd/'**Nd (Sample/Std * 10°)

with %6Sm decay or non-chondritic Sm/

Nd ratios.
Data from Nyquist et al., 1995; Boyet and Carlson, 2005;

Andreasen and Sharma, 2006; Rankenburg et al., 2006. Carlson et

al., 2007; Gannoun et al., 2011.



Few meteorites have both 1%?Nd/!**Nd and “8Nd/*Nd that

simultaneously overlap terrestrial values. E-chondrites come closest, but
even they show a range of isotopic compositions
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One explanation — regulate
mass transfer rates between
depleted upper mantle and
primitive lower mantle to

match erupted compositions,
e.g. Kellogg et al., EPSL, 2002
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Predicted 'Nd/'*Nd from '**Nd Excess Overlaps with
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If Earth-Chondrite Offset in '4?Nd is Reflective of non-Chondritic
Sm/Nd, Implications for Bulk-Earth Compositional Estimates
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If the bulk silicate Earth is like this early depleted reservoir, then it has half the radioactive heat generating capacity,
and half the “°Ar of mantle models based on chondritic refractory lithophile element abundances

Boyet and Carlson, 2005




How Did the Non-Chondritic
Mantle Form?

Melting is the easiest way to

fractionate the lithophile elements,

but what were the conditions of

melting?
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A Deep-mantle shear velocities
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If the BSE has a Sm/Nd Ratio 6% Higher than Chondritic, the
“Primitive Mantle” has eNd = +7 +2

Explains:
1) The most common Nd isotopic composition seen in OIB
2) The positive eNd seen even in the oldest mantle-derived rocks
3) Association of high He/*He mantle with positive eNd
4) The 4°Ar “paradox”
e U, Th, and K abundances in the non-chondritic BSE are 60% those
generally assumed
5) Flood basalts preferentially sample the non-chondritic primitive mantle
Implies:
1) DMM is less depleted than if calculated as originating from a chondritic
source (e.g. Workman and Hart, EPSL, 2005)
2) DMM occupies most of the mantle
Difficulties:
1) Mantle radioactive heat production 60% that of a chondritic mantle
2) How does one make an Earth with non-chondritic RLE?
e Is there a missing LIL-enriched reservoir?




